1,374 research outputs found

    Genetic dissection of type 2 diabetes

    Full text link

    A Variant in the KCNQ1 Gene Predicts Future Type 2 Diabetes and Mediates Impaired Insulin Secretion

    Get PDF
    Objective- Two independent genome wide association studies for type 2 diabetes in Japanese have recently identified common variants in the KCNQ1 gene to be strongly associated with type 2 diabetes. Here we studied whether a common variant in KCNQ1 would influence BMI, insulin secretion and action and predict future type 2 diabetes in subjects from Sweden and Finland. Research design and methods- Risk of type 2 diabetes conferred by KCNQ1 rs2237895 was studied in 2,830 type 2 diabetes cases and 3,550 controls from Sweden (Malmö Case-Control) and prospectively in 16,061 individuals from the Malmö Preventive Project (MPP). Association between genotype and insulin secretion/action was assessed cross-sectionally in 3,298 non-diabetic subjects from the PPP-Botnia Study and longitudinally in 2,328 non-diabetic subjects from the Botnia Prospective Study (BPS). KCNQ1 expression (n=18) and glucose-stimulated insulin secretion (n=19) was measured in human islets from non-diabetic cadaver donors. Results. The C-allele of KCNQ1 rs2237895 was associated with increased risk of type 2 diabetes in both the case-control (OR 1.23 [1.12-1.34], p=5.6x10(-6)) and the prospective (OR 1.14 [1.06-1.22], p=4.8x10(-4)) studies. Furthermore, the C-allele was associated with decreased insulin secretion (CIR p=0.013; DI p=0.013) in the PPP-Botnia study and in the BPS at baseline (CIR p=3.6x10(-4); DI p=0.0058) and after follow-up (CIR p=0.0018; DI p=0.0030). C-allele carriers showed reduced glucose-stimulated insulin secretion in human islets (p=2.5x10(-6)). Conclusion. A common variant in the KCNQ1 gene is associated with increased risk of future type 2 diabetes in Scandinavians which partially can be explained by an effect on insulin secretion

    Fasting Versus Postload Plasma Glucose Concentration and the Risk for Future Type 2 Diabetes: Results from the Botnia Study

    Get PDF
    OBJECTIVE—The purpose of this study was to assess the efficacy of the postload plasma glucose concentration in predicting future risk of type 2 diabetes, compared with prediction models based on measurement of the fasting plasma glucose (FPG) concentration

    A Variant of GJD2, Encoding for Connexin 36, Alters the Function of Insulin Producing β-Cells.

    Get PDF
    Signalling through gap junctions contributes to control insulin secretion and, thus, blood glucose levels. Gap junctions of the insulin-producing β-cells are made of connexin 36 (Cx36), which is encoded by the GJD2 gene. Cx36-null mice feature alterations mimicking those observed in type 2 diabetes (T2D). GJD2 is also expressed in neurons, which share a number of common features with pancreatic β-cells. Given that a synonymous exonic single nucleotide polymorphism of human Cx36 (SNP rs3743123) associates with altered function of central neurons in a subset of epileptic patients, we investigated whether this SNP also caused alterations of β-cell function. Transfection of rs3743123 cDNA in connexin-lacking HeLa cells resulted in altered formation of gap junction plaques and cell coupling, as compared to those induced by wild type (WT) GJD2 cDNA. Transgenic mice expressing the very same cDNAs under an insulin promoter revealed that SNP rs3743123 expression consistently lead to a post-natal reduction of islet Cx36 levels and β-cell survival, resulting in hyperglycemia in selected lines. These changes were not observed in sex- and age-matched controls expressing WT hCx36. The variant GJD2 only marginally associated to heterogeneous populations of diabetic patients. The data document that a silent polymorphism of GJD2 is associated with altered β-cell function, presumably contributing to T2D pathogenesis

    Regulation and Function of FTO mRNA Expression in Human Skeletal Muscle and Subcutaneous Adipose Tissue

    Get PDF
    OBJECTIVE-Common variants in FTO (the fat mass- and obesity-associated gene) associate with obesity and type 2 diabetes. The regulation and biological function of FTO mRNA expression in target tissue is unknown. We investigated the genetic and nongenetic regulation of FTO mRNA in skeletal muscle and adipose tissue and their influence on in vivo glucose and fat metabolism. RESEARCH DESIGN AND METHODS-The FTO rs9939609 polymorphism was genotyped in two twin cohorts: 1) 298 elderly twins aged 62-83 years with glucose tolerance ranging from normal to type 2 diabetes and 2) 196 young (25-32 years) and elderly (58-66 years) nondiabetic twins examined by a hyperinsulinemic-euglycemic clamp including indirect calorimetry. FTO mRNA expression was determined in subcutaneous adipose tissue (n = 226) and skeletal muscle biopsies (n = 158). RESULTS-Heritability of FTO expression in both tissues was low, and FTO expression was not influenced by FTO rs9939609 genotype. FTO mRNA expression in skeletal muscle was regulated by age and sex, whereas age and BMI were predictors of adipose tissue FTO mRNA expression. FTO mRNA expression in adipose tissue was associated with an atherogenic lipid profile. In skeletal muscle, FTO mRNA expression was negatively associated to fat and positively to glucose oxidation rates as well as positively correlated with expression of genes involved in oxidative phosphorylation including PGC1 alpha. CONCLUSIONS-The heritability of FTO expression in adipose tissue and skeletal muscle is low and not influenced by obesity-associated FTO genotype. The age-dependent decline in FTO expression is associated with peripheral defects of glucose and fat metabolism. Diabetes 58:2402-2408, 200

    A multigenerational study on phenotypic consequences of the most common causal variant of HNF1A-MODY

    Get PDF
    Correction: Volume65, Issue5 Page: 912-912 DOI: 10.1007/s00125-022-05663-z Published: MAY 2022 Early Access: MAR 2022Aims/hypothesis Systematic studies on the phenotypic consequences of variants causal of HNF1A-MODY are rare. Our aim was to assess the phenotype of carriers of a single HNF1A variant and genetic and clinical factors affecting the clinical spectrum. Methods We conducted a family-based multigenerational study by comparing heterozygous carriers of the HNF1A p.(Gly292fs) variant with the non-carrier relatives irrespective of diabetes status. During more than two decades, 145 carriers and 131 non-carriers from 12 families participated in the study, and 208 underwent an OGTT at least once. We assessed the polygenic risk score for type 2 diabetes, age at onset of diabetes and measures of body composition, as well as plasma glucose, serum insulin, proinsulin, C-peptide, glucagon and NEFA response during the OGTT. Results Half of the carriers remained free of diabetes at 23 years, one-third at 33 years and 13% even at 50 years. The median age at diagnosis was 21 years (IQR 17-35). We could not identify clinical factors affecting the age at conversion; sex, BMI, insulin sensitivity or parental carrier status had no significant effect. However, for 1 SD unit increase of a polygenic risk score for type 2 diabetes, the predicted age at diagnosis decreased by 3.2 years. During the OGTT, the carriers had higher levels of plasma glucose and lower levels of serum insulin and C-peptide than the non-carriers. The carriers were also leaner than the non-carriers (by 5.0 kg, p=0.012, and by 2.1 kg/m(2) units of BMI, p=2.2 x 10(-4), using the first adult measurements) and, possibly as a result of insulin deficiency, demonstrated higher lipolytic activity (with medians of NEFA at fasting 621 vs 441 mu mol/l, p=0.0039; at 120 min during an OGTT 117 vs 64 mu mol/l, p=3.1 x 10(-5)). Conclusions/interpretation The most common causal variant of HNF1A-MODY, p.(Gly292fs), presents not only with hyperglycaemia and insulin deficiency, but also with increased lipolysis and markedly lower adult BMI. Serum insulin was more discriminative than C-peptide between carriers and non-carriers. A considerable proportion of carriers develop diabetes after young adulthood. Even among individuals with a monogenic form of diabetes, polygenic risk of diabetes modifies the age at onset of diabetes.Peer reviewe

    Management of patients with diabetes and CKD : conclusions from a "Kidney Disease: Improving Global Outcomes" (KDIGO) Controversies Conference

    Get PDF
    The prevalence of diabetes around the world has reached epidemic proportions and is projected to increase to 642 million people by 2040. Diabetes is already the leading cause of end-stage kidney disease (ESKD) in most developed countries, and the growth in the number of people with ESKD around the world parallels the increase in diabetes. The presence of kidney disease is associated with a markedly elevated risk of cardiovascular disease and death in people with diabetes. Several new therapies and novel investigational agents targeting chronic kidney disease patients with diabetes are now under development. This conference was convened to assess our current state of knowledge regarding optimal glycemic control, current antidiabetic agents and their safety, and new therapies being developed to improve kidney function and cardiovascular outcomes for this vulnerable population.Peer reviewe
    corecore